PHYSICAL REVIEW D, VOLUME 63, 025002

Instability of a membrane intersecting a black hole
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The stability of a Nambu-Goto membrane at the equatorial plane of the Reissner—NuoresdérSitter
spacetime is studied. The covariant perturbation formalism is applied to study the behavior of the perturbation
of the membrane. The perturbation equation is solved numerically. It is shown that a membrane intersecting a
charged black hole, including an extremely charged one, is unstable and that the positive cosmological constant
strengthens the instability.
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[. INTRODUCTION main wall intersecting a Schwarzschild black hole in its
equatorial plane. Christensen al. [7] numerically found a
It is believed that in the early universe a series of vacuunseries of static configurations of a domain wall as a Nambu-
phase transitions led to several types of topological defect&oto membrane in the Schwarzschild spacetime, some of
[1]. Topological defects are relics of the early universe andvhich represent an intersecting pair of a domain wall and a
are expected to convey some information on physics of verplack hole. When arranged in sequence, these configurations
high energy scales beyond our reach with ground-based aseem to represent a scattering and capturing process of a
celerators. On the other hand, topological defects are canditomain wall by a black hole. In most situations of cosmo-
dates for the seeds of the observed large scale structure of thagical interest, the thickness of a domain wall will be much
universe such as sheetlike or filamentary structures or voidsmaller than the horizon radius of a solar-mass or primordial
Thus topological defects are attractive examples which conblack hole, so that the infinitely thin wallnembrang ap-
nect high energy physics and cosmology and we might b@roximation will be valid in such cases. When we further
able to have some information on high energy physicsneglect the gravitational effect of a domain wall, its space-
through cosmological observations such as gravitationaime history, i.e., the world sheet, is governed by the Nambu-
wave detection in the future. Topological defects, if theyGoto action and it is called the Nambu-Goto membrane.
existed, would interact with other strong gravitational A membrane lying in the equatorial plane of the black
sources such as black holes, and then they might have expkele spacetime has the highest symmetry among the configu-
rienced large deformation and emitted some information omations which represent an intersecting pair of a membrane
themselves as gravitational waves. If we succeed in detectingnd a black hole. This simple configuration is a possible
such gravitational waves and identifying them, we will be candidate for a final state of the scattering and capturing
able to confirm the existence of topological defects andprocess provided such a state stably exists. Having this in
hence the occurrence of a vacuum phase transition. mind, we study the stability of a Nambu-Goto membrane at
Topological defects with a finite extent such as a cosmiache equatorial plane of the Reissner—Nordsirale Sitter
string or domain wall are known to produce an unusuallRNdS spacetime. The charge of the black hole and the
gravitational field[2,3] and their dynamics is slightly com- positive cosmological constant are included to see their ef-
plicated. There are some studies on the interaction betweenfect on the stability. This mimics the situation where a do-
cosmic string and a black hole with the hope of detectingmain wall resulting from a vacuum phase transition is inter-
gravitational waves from cosmic strings. De Villiers and secting a charged primordial black hole in the early universe.
Frolov studied 4,5] the dynamics of the scattering and cap- We consider the linear perturbation of the membrane by
turing process of an infinitely thin test string by a Schwarzs-means of the covariant perturbation formali$8,9]. The
child black hole. However less is known on the interactionperturbation equation reduces to a wave equation on the
between a domain wall and a black hole; only the statiovorld sheet with the mass term, which is negative in the
configurations have been studied so far. Morisawal. [6] presence of the charge of the black hole or the positive cos-
showed the existence of static configurations of a thick domological constant. Accordingly instability is naively ex-
pected. Solving the perturbation equation reduces to solving
a two point boundary value problem. We numerically solve

*Email address: higaki@tap.scphys.kyoto-u.ac.jp it by the shooting and the relaxation methods. We find that a
"Email address: akihiro@yukawa.kyoto-u.ac.jp membrane intersecting a RNdS black hole is unstable. We
*Email address: ida@tap.scphys.kyoto-u.ac.jp find the instability at least in the range of 0.6G8fe|/M <1
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for A>0, and 0.75|e|/M =<1 for A=0, whereas the mem- DX + FﬁBX%X[fJ:Kabn”, (6)
brane in the Schwarzschild background is stable. ' o

While our treatment of a domain wall is simple with both whereK,, is the extrinsic curvature defined as
its thickness and gravitational effect neglected, our model of
the membrane-black hole system is all the more elementary Kab= = XEXpV.Nn,, )
and relevant in other contexts. The interaction between black .
holes and extended objects is important as an elementafy. iS the normal to the world sheel, is the world sheet
physical process. Indeed much attention has recently begipvariant derivative an, is the spacetime covariant de-
paid to the interaction between black holes and extendefivative. Contracting Eq(6) with »*°, we obtain
objects such as membranes or strings in the string or M
théory[lO—lE], the brane world scena?i[d4—1a, etc. gor Dx#+r5ﬂ7abx,aax,%: YK apn*. ®
instance in thg context of the 'brane'world mod'els, our Uniyy o this equation, Eq(4) becomes
verse is described as a four-dimensional domain wall in the
five dimensional bulk spacetime. Some people argue that a 5S
black hole on the gravitating membrane is realized as a X
“black cigar” in the bulk spacetime which intersects the u

membrane 14]. Equation (9) has only the component perpendicular to the

The rest of the paper is organized as follows. In Sec. Il W&o14 sheet. Hence the variation parallel to the world sheet
review th_e covariant perturbation formalism a'??' specify the 55 g physical meaning. Finally the equation of motion of
perturbation equation and the boundary conditions. The Nue membrane is

merical algorithm is also explained there. In Sec. Il we

= 0 y?PK ,,n*=0. 9)

present the results of numerical and analytical consider- K= VabKab= 0. (10)
ations. Finally we summarize and discuss the results in Sec.
V. This is the equation of minimal surfaces. In general, @Q)

cannot be solved analytically.

II. BASIC EQUATIONS

A. Equation of motion B. Perturbation equation

As noted above, the physically meaningful measure of the

The history of a membran@vorld sheel is described by perturbationsX* is the scalar

the timelike hypersurface(,y,,) embedded in the four-
dimensional spacetiméV,g,,,). The embedding is given by d=n,6X* . (12)

x#=XK(EY), w=0,....3, a=0,....2, ()  Taking the variation of Eq10) with respect tab and setting

wherex*’s are the spacetime coordinates &l the world it to zero, we obtain the perturbation equation

sheet coordinates. The induced metyig, on 2. is given by D@—(3R—4Rwh”)<b=0, (12)
=X~ X"
Yab=XaX b0 - 2) whereh,,=g,,—n,n, is the projection operator onto the
The dynamics of the membrane is described by the Nambd¥0rld sheet.
Goto action

C. Perturbation of a membrane at the equatorial plane of the

SXH XA = _Uf By, 3 RNdS spacetime
2 A membrane lying in the equatorial plane of the black
. hole spacetime has the highest symmetry among the configu-
whereo represents the surface energy density of the mez,iions found by 7] which represent an intersecting pair of a
brane in its rest frame. , _ membrane and a Schwarzschild black hole. This simple con-
We consider the variation of the action with respect iy ration is a possible candidate for a final state of the scat-

Xus tering and capturing process of a membrane and a black hole
5S provided such a state stably exists.
— = (T, 72X XE + OX™) (4) In general, spherically symmetric black hole spacetimes
SX af ,a’™b ' R . .
© have the discrete symmetry about the equatorial plane, i.e.,

the equatorial plane consists of fixed points of this symme-

L . , . .
whereI'y; is the spacetime affine connection andis the try. Hence the equatorial plane is totally geodesic #nd

d’Alembertian on the world sheet

=0.
1 9 P The most general spherically symmetric black hole space-
= _< = Y?’ab—b (5) time is the Reissner—Nordsétre-de Sitter spacetime
=y a€? 73
g,,dx*dx"= —fdt?+f~tdr?+r2d6*+r?sinfod¢?,
Recall the Gauss-Weingarten equation (13
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where a linear combination o&*'“’s ande”'“'x. With the time
dependence of the solution of the forft’" , the solutions

. 2M e? A ) e"'“’x ande '“'+ represent an ingoing wave and an outgo-

f=1- T + 2 3 (14) ing wave, respectively. At infinity or the cosmological hori-

zon we admit an outgoing wave, and at the event horizon an
A is the cosmological constant aiande are the mass and ingoing wave. This is because we assume no external source
charge of the black hole, respectively. The relation betwee®f perturbation of the membrane during its evolution. Hence
the spacetime coordinatésr, 6, ¢} and the world sheet co- We set the boundary conditions as follows:
ordinates{T,R,¥} of the membrane at the equatorial plane .
is S|mp|ys{ } q p COuteXF(_Iwr*) (r*_>+w)v

TlChexp+ior,)  (r,——), (21)

X

=T, =R 0=7., ¢=V. (15 with C;,/out CONstant. This form of boundary conditions ap-

pears in the standard analysis of a quasinormal mode of a
Then the induced metri@) is black hole[19].
With the time dependena®!, Im(w)<0 corresponds to
unstable modes. Then from the boundary conditi@i3, an

This means that the geometry of the membrane is a thredlnStable solution tolﬁfé[;})ﬁ) decays ag ™ ™(*)'x whenr,
dimensional black hole spacetime. The perturbation equatioi®®S 0+ and ase = whenr, goes to— . Multi-

Yapdé2deP=—fd T?+ f *dR?+ R?dW¥2. (16)

(12) becomes plying Eq. (18) by;(upper bar means the complex conju-
gate and integrating by parts, we obtain
eZ
Ob+|—+A|P=0. 17 +oof | dy|2 _dyv]™ oo
rt J _X +V|X|2 dr,+ _X_X :wZJ |X|2dr~k' (22)
oo\ [Ty dr,| -

The mass term becomes negative when the charge of the

black hole or the positive cosmological constant is presentis long as we consuder unstable modes, the surface term on
which implies instability. This is why we consider the equa-the left-hand sidéLHS) vanishes and the integrals on both
torial plane of the Reissner—Nordé&tne-de Sitter spacetime. sides converge. Therefore we obtain

In addition, it mimics a cosmologically interesting situation

where a domain wall resulting from a vacuum phase transi- ) +o (| dy|? ) e,
tion is intersecting a charged primordial black hole in the o =1 dr, +V[x|*]dr, . [ x|*dr, .
early universe. 23)

By a separation of variables®d=(x(r)/\r)exp{wt
+ime), Eq. (17 is transformed into a Schdinger type  Since the RHS of Eq(23) is real, w is real or pure imagi-
equation in the three-dimensional black hole spacetime  nary. Here we seek for unstable modés(w)<0]. So we
can setw=io(c<0). Then the boundary condition21)

—SZT;(JFV(F)X:wZX, 1g ead
¥ CouteXp(+0r,) (1, —+0),
V(r)zf{(m—z—e—z—A)—f_Zf,r | 19 X_){Cmexp(—ar*) (ry— — ). (24
r2 4 412

We shall examine the eigenvalue problem of Bd) subject

wherer, = [Tdr/f is the usual tortoise coordinate. For the {0 the boundary conditiong4).
casesM #0 we normalizer,e,A,w as

E. Algorithm

2
IM—r,  e/M—e, AM =A, oM—o. (20 The eigenvalue problem considered reduces to a two point

boundary value problem. We define four dependent variables
D. Boundary conditions as

The present problem reduces to solving a Sdimger d
type equation, and so does the problem of the metric pertur- Vi=X, Vo= X . Ya=0, Yai=A, (25)
bation of a four-dimensional black hole spacetime. Hence we dr,
will follow the stability analysis of the latter. )

We consider the casé4# 0. Then the tortoise coordinate Where ally;’s are functions ofr, , and s and A are con-
r, goes from—o to +. r, = — corresponds to the event Stants.A is the ratio ofC;, to Coy (or Co¢ to Cip). The
horizon andr, = + to infinity (A =0) or the cosmological evolution equations are
horizon (A>0). The potential(19) approaches zero as ) , 5 , )
goes to+ «. Therefore the asymptotic solution to H@8) is Y1=Y2, Y2=[V+(ya)ly:, Yy3=0, y;=0, (26)
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where the prime denotes the differentiation with respect to X(r) e” I \r [r—oo({—+)],
ry . We impose two sets of boundary conditions. The set 1 R(r)=—— 20y 3

. —_ o — 00
(Ya=Cout/Cin=A,) is Jroo l(r-2) 2 [r=ri({——=)]

(34)

V1= XA —Yaler), Y2= 7YaY1 (Al =re), (27) Hence there exists no unstable mode for the Schwarzschild

Y1=Ya€XRNYsl«2),  Y2=YaYi(alr, =ryo). case.
(28)
B. RNdS case
The set 2 §,=C;,/Cou=Ay) is Before describing the numerical results, we comment on
the upper bound ah for which unstable modes may exisit in
Y1=YaeXp—Yals1), Y2=—Yay1 (atry=r,1), (29  the Reissner—Nordgtmo-de Sitter case. The potentidl9)
takes the form
Y1=exp(Yaly2), Ya=Yayi(atr,=rys). (30 5
fF(r)/(4r°) (e=0),
The conditionA; X A,=1 is used for checking the reliability V()= fG(r)/(4r%) (e#0), (39
of calculations. Note that the boundary conditid@%)—(30)
leaveys,y, arbitrary. In general an arbitrary choiceyf,y,  wheref is defined by Eq(14),
at one boundary and the subsequent integration of the depen-
dent variables do not ensure that the boundary conditions at F(r)=—5Ar3+(4m?-1)r+6 (36)
the other boundary are satisfied. We solve this problem by
the shooting method. We also perform the calculation by thénd
relaxation method to confirm the results of the shooting

method. G(r)=—5Ar*+(4m?—1)r?+6r —9e°. (37)
First we considee=0 caseF(r) is a monotonously de-

IIl. RESULTS creasing function of and has the only one root far=0.

A. Schwarzschild case Therefore, by the argument of the energy inteddd], the

) . . sufficient condition for the stability of perturbation is
For pure Reissner-Nord¢tro cases the potentidll9) is

positive semidefinite fom=1: F(ro)=0, (39
B 2 € , 1)1 3 9¢? wherer . is the radius of the cosmological horizon. Equation
Vin={1-v+5 “a)2t 5 a0 (38) reads
re—6+5Ar2 9
(r=r.), (31 m=-"—_— - C_4_ = (39)
4r. re

wherer , =1+ /1—€? is the radius of the outer event hori-
zon. The equality is satisfied onlymi=e=1. Therefore, by
the argument of the energy integfaB], there is no unstable
mode subject to the boundary conditioi2g) whenm=1.

For the Schwarzschild case with=0 the radial function
R(r) = x(r)/r satisfies

wheref(r.)=0 is used. Where=0, r.=3. Therefore Eg.
(39 shows that at least fan=2 the potential19) is posi-
tive definite and that a membrane is stable against such per-
turbation.

Next we considee+# 0 case. For=0, G(r) either stays
negative, or becomes positive for an interval,f,) but oth-
erwise negative. Then the sufficient condition for the stabil-

2\d’R 1dR ¢? it o
ey -7 _ y of perturbation is
! r)er +r dr 1—2/rR 0. (32

G(r,)=0 and G(r,)=0, (40)
In terms of a new variablg=In(r —2) this equation becomes which excludes the possibility th&(r) stays negative, and
ensures ;<r, <r.<r,. Whene? increasesr , andr, de-
_ —R+02r2R=O. (33) crease and, andr increase. Hence it is sufficient to con-

dg? sidere?=1 case. In this case E¢0) reads
The solution to this equation is regarded as the zero energy ) 16r.—3r.+24 16r,—3r, +24
eigenfunction for the potential?r?. This potential is posi- m"=max 4r2 ' 4r2
tive definite sincer is real and negative. Therefore we have ¢ *
no solution which decays whehapproaches- « (the event 3 6 3
horizon and infinity as required by the boundary conditions =4+ max[ ——t St —2] , (41
(24) 4y c re 4r + re
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FIG. 1. The plots of the eigenfrequen¢yM|, versus the specific charde|/M, of the black hole for then=0 cases. The top left panel
shows the plot for the\M2=0 case, the top right for th& M2=1/1000, the bottom left for thd M?=1/100 and the bottom right for the
AM?=1/10. We obtained two sequences of the eigenvalues except fdrNtfe=0 case.

where againf(r,)="f(r;)=0 are used. Whem\ >0, r,
>1+1-€e?’=1 (now e?*=1). Forr>1

3 3.6
128~ 4r 2

<21 42
a (42

Therefore Eq(41) shows that at least fan=4 there exists
no unstable mode.

The condition that the Reissner—Nordstrede Sitter
spacetime has a static regionAs<A .4, Where

3(1+/9—8¢€?)
(18— 4€%)(3+9—8e?)—24e?

This is a monotonously increasing functionesfand has the
minimum valueA ,,,{0)=1/9. So we numerically investi-
gate the cases\M?=0,1/1000,1/100,1/10. We found un-
stable modes for various parameter setdvi?,|e|/M). The

Amax ez) = (43

Figure 1 shows that whee|/M becomes larger, we have
a larger|oM| and hence a higher growth rate of the pertur-
bations. Therefore the charge of the black hole indeed desta-
bilizes the membrane at the equatorial plane. Since the mem-
brane is electrically neutral, this instability should be
understood as the curvature effect of the charge of the black
hole.

As to the effect of the cosmological constaknt we find
no simple tendency: for a givele|/M, a largerAM? does
not necessarily lead to a largerM|. However with a non-
vanishing cosmological constant the magnitude of the eigen-
value is typically 102 for 0.001<|e|//M <1 in contrast to
the RN cases, in which the magnitude of the eigenvalue al-
most exponentially decreases with decreasing specific charge
and is far below 102 for |e|/M =<0.80. Therefore we can at
least say that the cosmological constant also destabilizes the
membranes. This expectation is supported by the consider-
ation of the de Sitter background casee Appendix A

We plotted some of the eigenfunctions fdM?=0 cases
in Fig. 2. Some features of the profiles are listed in Table I.

eigenvalues om=0 modes are shown in Fig. 1. The results When we decrease the value of the specific charge of the
of the shooting method and the relaxation method agree verylack hole, the peak of the corresponding profile gets higher

well, the error being within 5%.

and approaches the event horizon.
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FIG. 2. The radial profilefR(r)= x(r)/\r of the m=0 mode FIG. 3. The plots of the eigenfrequency|dM|, versus the spe-
eigenfunctions for the pure Reissner-Nordstracases |g|/M cific charge, lfe/M|, of the black hole for the\ M?=0m=0 cases.
=1,0.99,0.90,0.80,0.75). The abscissa is normalized in the unit dlVe find an approximate linear relation betweejoM| and Ife/M|.

the horizon radir , . . . .
" of configurations found by Christensetal. seem to repre-

As noted above we found that the charge of the black hol§€Nt such situations. Among these configurations a mem-
destabilizes the membrane in general. However, in th&'@n€ lying in the equatorial plane of the black hole space-

present analysis, we could not show the existence of unstabpamei has th? E'ghESt sy_mmetré/ and is most likely to be the
modes for smalle|/M (<0.75) whenAM?=0 due to the Ihal state of the scattering and capturing process. On seeing
difficulty in the numerical calculation as follows. As|/M our result, however, we expect that it is not the case. In

. " particular, Fig. 2 allows us to imagine that the membrane
becomes smallefoM| decreases approxmatelly IN POWETS moves away from the equatorial plane. Then what eventually
of |e[/M for 0.75<|e|/M=<1 (see Fig. 3 Judging by the happens to that membrane? Causality prohibits the mem-
extrapolation of this relation to the regime|/M<0.75,  prane from escaping from the event horizon. By analogy
|oM| will be infinitesimal whenje[/M~0. In order for the  wjth the scattering process of a cosmic string off a black hole
asymptotic formse™'“"s of y to be justified|V(r)| mustbe [4 5] the membrane might experience large deformation and
much smaller thajw?|=|o?| at the boundaries. Then the the topology of the membrane might change. Here are some
coefficients in the evolution equatiori6) get extremely speculations on the fate of the membrane; it may settle down
small and we suffer from underflows of numerical calcula-to some other configuration than the equatorial plane, or it
tions. By the same numerical difficulty, we leave open themay break up into two parts with one swallowed by the black
possibility that unstable modes with=1 exist in the pres- hole and the other escaping to infinity. We need to perform a
ence of the positive cosmological constant. full dynamical computation to resolve this issue. However,
that is beyond the scope of this paper.

We ignored the gravitational effect of a domain wall
whereas a gravitating domain wall is known to make a re-
In this paper we numerically studied the stability of a pulsive gravitational field2], which is opposite to the strong

Nambu-Goto membrane at the equatorial plane of thettractive gravity of a black hole. It is quite intriguing to find
Reissner—Nordstro—de Sitter spacetime and found that in out the consequences of the competition of these opposite
general such a membrane is unstable when the black hole fgrces.
charged.

A membrane is a two-dimensional extended object in the
three-space. So when it moves towards a black hole, it is we would like to thank Professor H. Sato, Professor T.
expected to be inevitably captured by the black hole. A seriesjakamura, Professor H. Kodama, and Professor T. Chiba for
many useful comments. We also thank Y. Morisawa and R.
Yamazaki for fruitful discussion. We are grateful to Dr. T.
Harada for the discussion, especially, on the boundary con-
ditions. A.l. and D.l. were supported by the JSPS. This work
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TABLE |. Some features of the radial profiles in Fig. 2.

Charge Event horizon Peak location Peak amplitude
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0.99 1141 1.281 0.57 1123 APPENDIX A: de SITTER AND MINKOWSKI

0.90 1.436 1.468 0.79 1.022 BACKGROUND CASES

0.80 8/5 1.603 0.79 1.002

0.75 1.661 1.662 0.78 1.001 To understand the destabilizing effect of the positive cos-

mological constant, we compare the de Sitter and Minkowski
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TABLE 1l. Code check. Comparison of numerically obtained
eigenvalues for the square-well potentiBR) with those obtained
from Eq. (B4).

Analytic

[from Eq.(B4)] Numerical Alsee Eq(B3)] Parity
011 0.673612 0.67361 +1 even
o1 0.85723 0.85723 +1 even
099 0.319023 0.31902 -1 odd
031 0.920798 0.92080 +1 even
T30 0.650366 0.65037 -1 odd
T4 0.949724 0.94972 +1 even
T2 0.785671 0.78566 -1 odd
043 0.438306 0.43830 +1 even
51 0.965261 0.96527 +1 even
s 0.854684 0.85467 -1 odd
053 0.641057 0.64105 +1 even
Ts5a 0.192693 0.19269 -1 odd

cases. In these cases Ef8) is rewritten in terms of a new
function P(r, )= x(r,)/\r, as

NE
42

1 7

42 6

5
2.2 | p—
A+d?+ 12A r )P 0,
(A1)

wherem is set to zero for simplicity. The reason we use
P(r,) is that in the de Sitter and Minkowski cases the po-
tential (19 for x(r,) diverges at the center=0 and that
numerical calculations become unstable.

In the Minkowski caser, =r and Eq.(Al) becomes
Bessel's differential equation of order O

d?pP
d(or)?

1 dP

Torden T

0, (A2)

the solution of which is a linear combination of the modified
Bessel functiondy(or) and Ky(or). Howeverly(or) and
Ko(or) diverge atr—oo andr=0, respectively and do not

PHYSICAL REVIEW D63 025002

TABLE IIl. Comparison of the shooting and relaxation meth-
ods. Some selected eigenvalyed| are listed.

Specific charge|€|/M) Shooting Relaxation
AM?=0
1 6.351x 10 2 6.328<10 2
0.99 4644102 4.640<10 2
0.97 2.928 10 2 2.927x 10 2
0.95 1.92& 10 2 1.928<10°?
0.93 1.26& 10 2 1.268< 10 ?
0.91 8.196¢10 3 8.182x 103
0.89 5.13% 103 5.120< 103
0.87 3.10410°° 3.084x10°3
0.85 1.79% 103 1.778<10°3
0.83 9.93%10* 9.792<10 %
0.81 5.24X 104 5.180<10 4
0.79 2.63%x10°* 2.559< 10 4
0.77 1.255% 104 1.211x10°4
0.75 5.676<10°° 5.416<10°°
AM?=0.1
1 9.9727% 10 2 9.9764x 10?2
1(2nd seq). 7.2435¢10°3 7.3476<10°°2
0.99 9.697K 102 9.7009< 10?2
0.90 8.125% 102 8.1291x 10?2
0.80 7.037& 102 7.0409< 10?2
0.70 6.2124& 10 2 6.2149< 10 2
0.60 5.538% 10 2 5.5406< 102
0.50 4.976K 10 2 4.9775< 10 2
0.40 450910 2 4510310 ?
0.30 4.135%X 102 4.1361x 1072
0.20 3.858K 102 3.8594x 10?2
0.10 3.687& 102 3.6885< 10?2
0.01 3.6305% 102 3.6311x 10?2
0.001 3.629% 102 3.6305< 10?2

andKy(ar, ). The regularity condition at the center excludes
Ny andKy as the asymptotic solutions.

When |o|<11A/9, the asymptotic behavior d® near
the center changes from the Minkowski case and we expect

satisfy the regularity conditions. Hence membranes arg,e emergence of unstable modes sidgés a bounded func-

stable in the Minkowski cas€The stability form=1 cases
is also verified.

tion. In fact we found unstable modes by numerical calcula-
tions. The method is similar to the one for the RNdS cases.

When the positive cosmological constant is present, thegpe asymptotic form ofP near the cosmological horizon

situation changes. In the limit of—0 (r, — — =), Eqg. (Al)
reduces to

Unlike Eqg. (A2), the solution to Eq(A3) differs depending
on the sign of (1A/9— o). When|o|<\/11A/9, the solu-
tion is a linear combination of the Bessel functidg( ar, )
and the Neumann function Ng(ar,), where «
= |11A/9— o?]. When|o|> 11A/9, the solution is a lin-

ear combination of the modified Bessel functidpéar, )

d2P+ 1 dP+
dl’i I dr*

11

3A—a2>P=o. (A3)

r, —o is determined to be”"*/\r, by the boundary con-
dition similar to Eq.(24). The eigenvalues are 0.18257,
—0.05773;-0.01826 for A=1/10,1/100,1/1000, respec-
tively. Though we performed numerical calculations just for
three values of the cosmological constant, unstable modes
are expected as long as the positive cosmological constant is
present.

APPENDIX B: CODE CHECK

We calculated the energy spectra for a one-dimensional
square-well potential to check the reliability of our numerical
code.
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We consider an eigenvalue problem We can analytically show that the eigenvalues for the po-
. tential (B2) satisfy the equation
d
——¢+V(X)p=—0"¢ (B1)
dx

nw—2ws—2arcsis=0 (n=0,-1,+2,...), (B4)

for a square-well potential

wheres=\1—-¢?. The eigenvalues,,, of Eq. (B1) are la-
(B2) beled byw andn. We found good agreements of eigenvalues
0  (otherwisg. o Obtained by solving the two point boundary value prob-

) lem, with those obtained by directly solving E®4) (Table
The problem reduces to a two point boundary value problerr|1|)_

at the boundariex=x;,X, (X;<—Ww,X,>w). The depen-
dent variables are

-1 (x|sw,w>0),
V(X)=

dé APPENDIX C: CODE CHECK 2
Yi=é Vo= Y3TO YaTA, (B3) In this paper we present the results for which the shooting
and relaxation methods agree within 5% error. The agree-
where o and A are constants. The evolution equations andment is, however, far better than 5% in most cases. The
the boundary conditions are similar to Eg6) and Eqs(27), comparison of the two methods is summarized in Table IlI
(28) or Egs.(29), (30), respectively. for some cases.
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